## SD CONTROL UNIT FOR AC DRIVES LV

#### Address

Via Archimede 18 Sesto San Giovanni (MI) 20099 Italy

#### Phone

T: +39 02.26.22.40.54 F: + 39 02.24.06.945

#### Email / Web

commericale@secompower.it info@secompower.it www.secompower.it



## **About Us**

## FOUNDED IN 1975, SECOM IS A LEADING COMPANY FOR THE DISTRIBUTION AND PRODUCTION OF COMPONENTS AND DEVICES FOR POWER ELECTRONICS

SECOM continuously carries out new research and technical proposal in conjunction with important clients, providing technical support to meet their specific needs.

Production excellence and efficient organization allow SECOM to commit itself to providing to the market with timely and professional service in numerous sectors of static energy conversion.

Flexibility and short delivery time have become pillars to SECOM's company policy.

#### WHO WE ARE

>>

Over the years the company has become an important designer and manufacturer of power electronic devices for industrial automation manufacturing technologies

#### WHAT WE DO



SECOM studies and manufactures customized solutions on behalf of its customers.

## **CONTENTS**

4 **OVERVIEW** 5 **FEATURES** 6 **FUNCTIONS** 7 SIGNALS INTERFACE 8 CODING 9 **SAFETY INTEGRATED** 10 **OPTIONS** 12 SECOM DRIVE MANAGER

## **CONTROL UNIT**

## **OVERVIEW**

SECOM provides a new universal control system for its inverters completely developed in house.

Focused on industrial application, **SD CONTROL** currently covers a wide range of control strategies for induction motors, regenerative frontend, grid application and much more.

The fiber optic connection between SD CONTROL and power part simplifies cabling even in the parallelization of converters. The SD MANAGER configuration tool helps the customer to achieve a short commissioning time with a simple parametrization interface.



| Main general data    |                                                                             |
|----------------------|-----------------------------------------------------------------------------|
| Main supply voltage  | 24V <sub>cc</sub>                                                           |
| Consumption          | 300mA                                                                       |
| Protection degree    | IP20                                                                        |
| Installation         | Wall mounting                                                               |
| 1/0                  | 16 Input, 10 Output (6 relay 125 Vac - 4 Output collector)                  |
| Communication        | Ethernet, CanOpen, Modbus TCP/IP, (Profibus DP slave or profinet as option) |
| Internal device      | Real time PLC                                                               |
| Dimensions           | 165*45*230 (W*D*H)                                                          |
| Weight               | 0,5 kg                                                                      |
| Control type         | Grid control type and motor control type                                    |
| Motor control system | V/Hz, Field oriented, Sensorless FOC                                        |
| Grid control system  | AFE, F3E, VAC                                                               |

| Ambient conditions                |                           |
|-----------------------------------|---------------------------|
| Altitude                          | 1000 m above sea level    |
| Climate                           | Temperate                 |
| Operating temperature (min./max.) | 0 ÷ 40°C                  |
| Storage temperature               | -40 ÷ +70°C               |
| Relative humidity                 | 10 ÷ 90% (from 0 to 40°C) |

## **CONTROL UNIT**

## **FEATURES**

The control unit permit to select the most suitable control method according to need of use. The **SD-MCU** allows F3E, AFE, Inverter control strategies and much more.

#### 1. Motor control highlights

|                    |                | Encoder | Output<br>voltage<br>sensor | Ouput LC<br>filter | DC voltage<br>accuracy | V <sub>DC</sub> response | Transient cur-<br>rent response | 1°<br>harmonic<br>current<br>accuracy | Tran-<br>sient<br>speed<br>re-<br>sponse | Speed<br>accuracy |
|--------------------|----------------|---------|-----------------------------|--------------------|------------------------|--------------------------|---------------------------------|---------------------------------------|------------------------------------------|-------------------|
|                    | Scalar         | Option  | Option                      | Option             | -                      | -                        | Slow                            | < 1%                                  | Slow                                     | 1%                |
| V/Hz               | Open<br>loop   | Option  | Option                      | Option             | High                   | Slow                     | Fast                            | < 1%                                  | Fast                                     | < 1%              |
|                    | Closed<br>loop | Option  | Option                      | Option             | High                   | Slow                     | Fast                            | < 1%                                  | Fast                                     | < 1%              |
| Fiel orie<br>(FOC) | nted           | Option  | Option                      | Option             | High                   | Fast                     | Very fast                       | < 1%                                  | Very<br>fast                             | < 0,01%           |
| Sensorle           | ess (FOC)      | Option  | Option                      | Option             | High                   | Fast                     | Very fast                       | < 1%                                  | Very<br>fast                             | < 0.3%            |

#### 2. Grid control highlights

|     | Output<br>voltage<br>sensor | Ouput<br>LC filter | DC<br>voltage<br>accuracy | Transient<br>DC voltage<br>response | Transient<br>current<br>response | 1° harmonic<br>current ac-<br>curacy | Active<br>current<br>control | Reactive<br>current<br>control | Grid<br>parallel |
|-----|-----------------------------|--------------------|---------------------------|-------------------------------------|----------------------------------|--------------------------------------|------------------------------|--------------------------------|------------------|
| AFE | Option                      | < 1%               | Very fast                 | Very fast                           | Very fast                        | < 1%                                 | Yes                          | Yes                            | Yes              |
| F3E | Option                      | -                  | Very fast                 | Very fast                           | -                                | -                                    | -                            | No                             | Yes              |
| VAC | Option                      | -                  | -                         | -                                   | Very fast                        | < 1%                                 | -                            | -                              | No               |

# CONTROL UNIT FUNCTIONS

The **SD-MCU** unit come with built in control function that the user can select according to the application need.

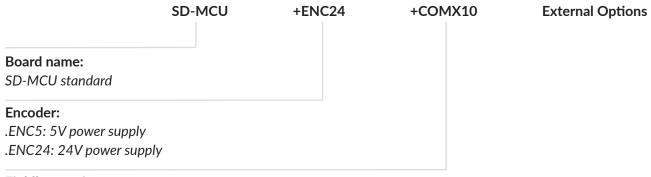
| Control functions                             |                                                                                                                                                  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Flying restart                                | To estimate the motor speed before start with demagnetized motor                                                                                 |
| Fast flying restart                           | To estimate the motor speed before start in any condition (it requires SD-SYNC)                                                                  |
| 2 digital potentiometer                       | To generate a reference with configurable steps                                                                                                  |
| 2 JOG                                         | A pulse to reach a certain speed reference with a certain ramp time                                                                              |
| Cold Bypass (starter)                         | To start the motor up to the grid voltage and frequency and afterwards the motor will be connected to the grid and the Inverter will be bypassed |
| Hot Bypass                                    | Bring the motor on line to the grid and vice-versa                                                                                               |
| Helper (Master-follower)                      | A master drive can control other slave drive with a reference of torque (for motor control) or current (for AFE)                                 |
| Ride through (kinetic regeneration)           | If the DC voltage goes down, the DC bus vale is substained by keeping the kinetic energy of motor and load                                       |
| Grid waiting                                  | If the DC goes down, power module switch off the pulses till the DC voltage be back                                                              |
| Current Brake and/or V <sub>DC</sub> rollback | To speed up the actual ramp stop time                                                                                                            |
| Energy saver                                  | To reduce as much as possible the power loss                                                                                                     |
| Safe torque off                               | SIL 3 - safety function to avoid torque transfer                                                                                                 |
| Speed droop                                   | To share the load when more motors are mechanically coupled                                                                                      |

| Other control feature        |                                                                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Commissioning/ID test        | A useful set of function to detect the motor parameter from plate data, or at standstill or in run for magnetization curve detection |
| Short circuit Management     | For VAC generator, it is possible to control the short circuit current for protection selectivity with various strategy              |
| Regulators auto-tuning       | Main regulator coefficients are autodetected                                                                                         |
| Configurable I/O             | Almost all the digital I/Os are configurable; for example an output can be connected to a bit of a command or status word            |
| Various mechanical reference | Up to 4 ramps time with various way to select them, 4 skip frequency, torque reference, up to 2 reference source, etc                |
| Alarms configuration         | All the software alarm are configurable. The drive can perform even an OFF1/2/3 before switch to fault state                         |
| Internal custom PLC          | Users can program a custom PLC to add functionalities, expand I/O, etc                                                               |

# CONTROL UNIT SIGNAL INTERFACE

**SD-MCU** Control card manages analog and digital signals coming from system and general alarms.

| Digital output signals - X3 |               |                                         |  |
|-----------------------------|---------------|-----------------------------------------|--|
| X3-1                        | OUT1          | Digital output signal 1                 |  |
| X3-2                        | GND           | 0V reference for signals                |  |
| X3-3                        | OUT2          | Digital output signal 2                 |  |
| X3-4                        | GND           | 0V reference for signals                |  |
| X3-5                        | OUT3          | Digital output signal 3                 |  |
| X3-6                        | GND           | 0V reference for signals                |  |
| X3-7                        | OUT4          | Digital output signal 4                 |  |
| X3-8                        | GND           | 0V reference for signals                |  |
|                             | Digital outpu | t realys - JP2                          |  |
| JP2-1,2,3                   | NO, C, NC     | Output relay 1 (MCB close CMD)          |  |
| JP2-4,5,6                   | NO, C, NC     | Output relay 2 (Precharge close CMD)    |  |
| JP2-7,8,9                   | NO, C, NC     | Output relay 3                          |  |
| JP2-10,11,12                | NO, C, NC     | Output relay 4                          |  |
| JP2-13,14,15                | NO, C, NC     | Output relay 5 (Inverter fan start CMD) |  |
| JP2-16,17,18                | NO, C, NC     | Output relay 6 (Fault active)           |  |


| Anal   | og signals JP3              |
|--------|-----------------------------|
| JP3-2  | 0V analog inputs            |
| JP3-3  | Analog input (4-20mA/±5V)   |
| JP3-6  | 0V analog inputs            |
| JP3-7  | Analog input 2 (4-20mA/±5V) |
| JP3-10 | 0V analog inputs            |
| JP3-11 | Analog input 3 (4-20mA/±5V) |
| JP3-14 | 0V analog inputs            |
| JP3-15 | Analog input (±10V)         |
| JP3-18 | 0V analog inputs            |
| JP3-19 | Analog input 5 (±10V)       |
| JP3-22 | 0V analog inputs            |
| JP3-23 | Analog input 6 (±10V)       |

|       | Digital input signals | s 24V X1                       |
|-------|-----------------------|--------------------------------|
| X1-1  | Digital IN 1          | Input for the digital input 1  |
| X1-2  | Digital IN 2          | Input for the digital input 2  |
| X1-3  | Digital IN 3          | Input for the digital input 3  |
| X1-4  | Digital IN 4          | Input for the digital input 4  |
| X1-5  | Digital IN 5          | Input for the digital input 5  |
| X1-6  | Digital IN 6          | Input for the digital input 6  |
| X1-7  | Digital IN 7          | Input for the digital input 7  |
| X1-8  | Digital IN 8          | Input for the digital input 8  |
| X1-9  | GND                   | OV reference for signals       |
| X1-10 | Digital IN 9          | Input for the digital input 9  |
| X1-11 | Digital IN 10         | Input for the digital input 10 |
| X1-12 | Digital IN 11         | Input for the digital input 11 |
| X1-13 | Digital IN 12         | Input for the digital input 12 |
| X1-14 | Digital IN 13         | Input for the digital input 13 |
| X1-15 | Digital IN 14         | Input for the digital input 14 |
| X1-16 | Digital IN 15         | Input for the digital input 15 |
| X1-17 | Digital IN 16         | Input for the digital input 16 |
| X1-18 | GND                   | 0V reference for signals       |

## **CONTROL UNIT**

## **CODING**

The control unit SD-MCU is identified by a unique code described as follow:



#### Fieldbus option:

.COMX10: Profibus-DP .COMX51: ProfiNet slave

| Option code | Description                                    |
|-------------|------------------------------------------------|
| /OP         | Operator Panel with USB cable (3m) and Ferrite |
| /SYNC       | Temperate                                      |

#### Fieldbus communication interface

A redundant power supply can be added internally to each power module.

The power supply card (ALIDAN) is a powerful switching power supply for back up purpose of the

 $+24V_{DC}$  voltage used in all the electronic cards present is SD drives.

| Fieldbus name     | Equipment | Example use                                                       |
|-------------------|-----------|-------------------------------------------------------------------|
| CAN Open Master   | Standard  | Remote I/O expansion<br>Master/Follower application (Master side) |
| CAN Open Slave    | Standard  | Automation level 1 slave                                          |
| Modbus TCP Master | Standard  | Remote I/O expansion                                              |
| Modbus TCP Slave  | Standard  | Automation level 1 slave<br>SDM interface                         |
| Profibus Slave    | Optional  | Level 1 Slave                                                     |

## SAFETY INTEGRATED

The SECOM drive have integrated safety functions that prevent the requirement of many external electromechanical components that should be normally used to ensure the safety standards.

#### Safe Torque Off (STO)

"Safe Torque Off" ensures that torque is no longer output at the motor shaft.

| Certificate Number |
|--------------------|
| Report Reference   |
| Issue Date         |

20161227\_4787333343-20161227\_4787333343\_Functional Safety Report 2016-December-27<sup>th</sup>

#### Additional Information:

Safety function «Safe Torque Off (STO)» as defined by IEC 61800-5-2, complies with the requirements for the following functional safety ratings:

- SIL Capability 3, as defined by IEC 61800-5-2:2007
- SIL 3, as defined by IEC 61508:2010
- PL e, Category 3 as defined by ISO 13849-1:2006
- SIL Claim Limit 3 as defined by IEC 62061

Further safety-related data:

- PFH (as defined in IEC 61508:2010): 3.372E-08/h
- MTTFd (as defined in ISO 13849-1:2006): 3385 years

The product must be installed, operated, and maintained, in accordance with the instructions for use.

## CONTROL UNIT AND OPTIONS

#### 1. SD-MCU

SECOM provides a new control system for its Inverters completely developed in house.

Focused on industrial application, **SD CONTROL** currently covers a wide range of control strategies for induction motors, regenerative front-end, grid application and much more.

The fiber optic connection between **SD CONTROL** and power part simplifies cabling even in the parallelization of converters.

The SD MANAGER configuration tool helps the customer to achieve a short commissioning time with a simple parametrization interface.



#### 2. COMX - Profibus - DP Interface SD-COMX10

The SD-COMX10 communication module has been designed to be integrated into directly to the motor controllerSD-MCU to add a network profibus interface. All communication tasks are executed autonomously within the module - irrespective of the processor of the target device.

Process data is exchanged via a Dual-Port-Memory which is accessed either by an 8-/16 bit bus interface or a fast 50 Mhz SPI interface.

#### 3. COMX - Profinet Interface SD-COMX51

The SD-COMX51 communication module has been designed to be integrated into directly to the motor controller SD-MCU to adda network Profinet interface. All communication tasks are executed autonomously within the module - irrespective of the processor of the target device.

Process data is exchanged via a Dual-Port Memory which is accessed either by an 8-/16-bit bus interface or a fast 50 Mhz SPI interface.



O10 SD-MCU

## CONTROL UNIT AND OPTIONS



#### 4. ENC-Encoder card SD-ENC

The Encoder Receiver Option allows incremental encoders to be connected directly to the motor controller SD-MCU to provide highly accurate speed feedback measurement. It mounts directly to the Main Control Board.

It's used for Flux Vector Control operation with sensor it therefore improves drive performance of the motor control.

#### 5. SYNC - Synchronization card SD-SYNC

The synchronization card is used in all the application where a line synchronization is required. Then SD-SYNC card is present in all the AFE/F3E configuration and can be placed inside the power stack or alternatively directly on the main line. As standard the card is supplied with aluminum case IP20.





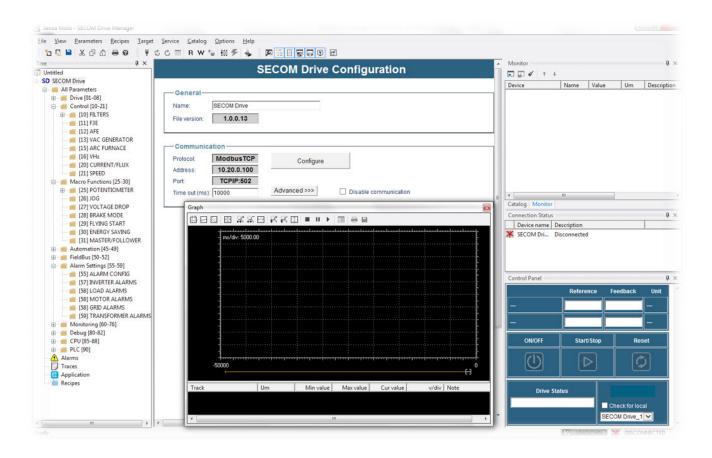
#### 6. OP-Keypad SD-OP

The Keypad is a simple and fast way to program and communicate with the drive, a power platform with a menu structure permit a rapid interpretation of parameters and functions.

#### 7. Cable

Keypad cables to connect the control unit SD-MCU to the keypad.

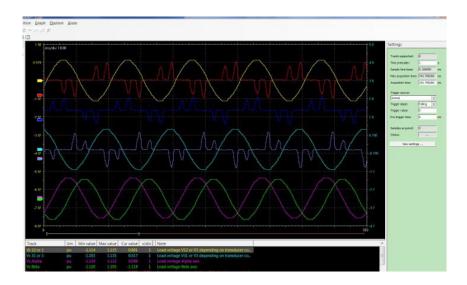



### **SECOM DRIVE**

#### **MANAGER**

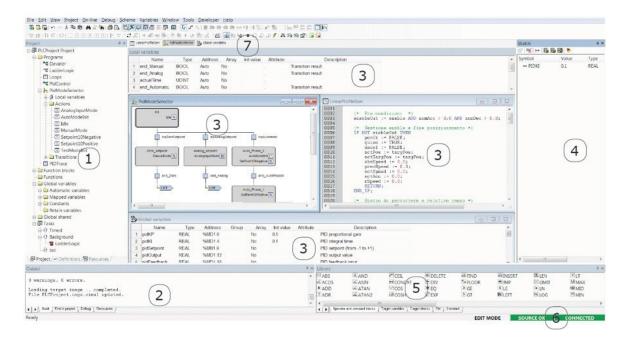
SDM (SECOM Drive Manager) permit to configure the drive by RJ45 port (Ethernet cable).

The main features are:


- Set parameters configuration and password to lock modification
- Save up to 3 parameters default configuration
- Keep the control (manual control) completely bypassing the reference configuration
- Commissioning the drive quickly and autotune some regulators
- Grouping the parameters in recipes to customize (and simplify) the use of the drive manager
- Compare parameters with other drives
- Check and configure the active faults and alarms and action to perform
- Check the parameter log with the time table
- Check the alarm history log with time table and configure the alarms behavior
- Download and upgrade the control software (via USB key too)
- Download the Data Log (trace) and see what happened before and a little after a fault
- Download a custom PLC Application (or a PLC provided by SECOM or other partners)
- Monitoring the actual quantity of the drive an plot it with realtime or non-realtime graph



## **SECOM DRIVE**

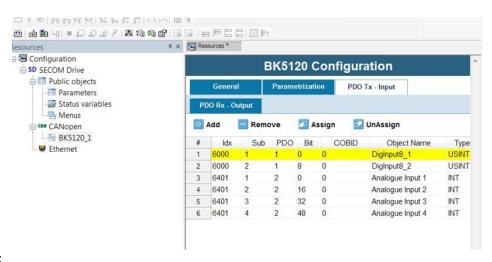

## **MANAGER**

The **SOFT SCOPE TOOL** provided with SECOM drive manager allows viewing, saving and opening control analog signal with cycle time synchronous with control frequency (real time).



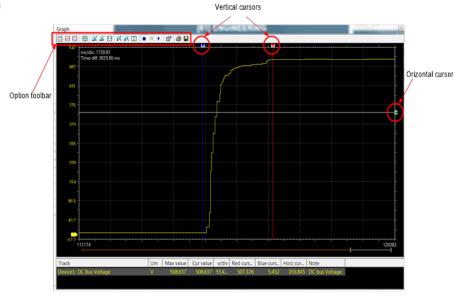
**SD logic environment (PLC)** permit to program a logic function inside the control unit SD-MCU. The software support the standard programming languages (IL, ST, LD, FDB, SFC). PLC function can be used for:

- Command fans, contractors, relays
- Create new functions, signal interface and alarms




## **SECOM DRIVE**

## **MANAGER**


#### Further SECOM Drive Manager features:

- Parameter change history log
- Fault/warning history log
- Firmware download
- Control parameter lock code feature
- Different parameters set load/save
- Trace on event
- Upload/download via USB or Ethernet



#### SD commissioning:

- Parameter calculation
- Motor identification at stand still (under development)
- Magnetization curve detection
- Trouble shooting tool analysis

