# HIGH FREQUENCY INDUCTION HEATING



Via Archimede 18 Sesto San Giovanni (MI) 20099 Italy

**Phone** T: +39 02.26.22.40.54

F: + 39 02.24.06.945

Email / Web commericale@secompower.it info@secompower.it www.secompower.it



# **About Us**

#### FOUNDED IN 1975, SECOM IS A LEADING COMPANY FOR THE DISTRIBUTION AND PRODUCTION OF COMPONENTS AND DEVICES FOR POWER ELECTRONICS

SECOM continuously carries out new research and technical proposal in conjunction with important clients, providing technical support to meet their specific needs.

Production excellence and efficient organization allow SECOM to commit itself to providing to the market with timely and professional service in numerous sectors of static energy conversion.

Flexibility and short delivery time have become pillars to SECOM's company policy.

#### WHO WE ARE >>

Over the years the company has become an important designer and manufacturer of power electronic devices for industrial automation manufacturing technologies

#### WHAT WE DO >>

SECOM studies and manufactures customized solutions on behalf of its customers.

## CONTENTS

#### **4 INDUCTION HEATING SYSTEM**

#### 6 Cabinet layout

#### **8 DEEP PURPLE**

- 8 Overview
- 9 Dimensional drawings
- 10 Cooling system
- 11 Technical data

#### 12 VIOLA

- 12 Overview
- 13 Dimensional drawings
- 14 Cooling system
- 15 Technical data

#### **16 SPARTAN**

- 16 Overview
- 17 Dimensional drawings
- 18 Cooling system
- 20 Technical data

#### 22 TESEO

- 22 Overview
- 24 Mechanical data
- 26 Cooling system
- 27 Technical data

### INDUCTION HEATING SYSTEM

Induction Heating is the process of heating an electrically conducting object by electromagnetic induction, where eddy currents are generated within the metal and its resistance leads to Joule heating. So it is possible to heat a metal without direct contact and without open flames or other heat sources (like IR).

An induction heater consists of an electromagnet (coil), through which a high-frequency alternating current (AC) is passed.

The frequency of AC used dependson the object size, material type, coupling (between the work coil and the object to be heated) and the penetration depth.

An induction heating system is composed by an inductor (to generate the magnetic field) and a converter (to supply the inductor with a time-varying electrical current).

#### Advantages of Induction Heating

- Improved final product quality since the parts to be heated have no contact with direct flames, eliminating any quality issue related to open flame treatment
- Very low scale formation due to shorter heating time than traditional gas furnace heat treatment
- High productivity because heat is developed instantly inside the workpiece
- Environmental friendly: induction heating does not burn traditional fossil fuels
- Safer process thanks to the elimination of smoke, waste heat, emissions and loud noise
- Reduced energy consumption due to a more efficient process with immediate heating availability





### TYPICAL CABINET LAYOUT



### TYPICAL CABINET LAYOUT

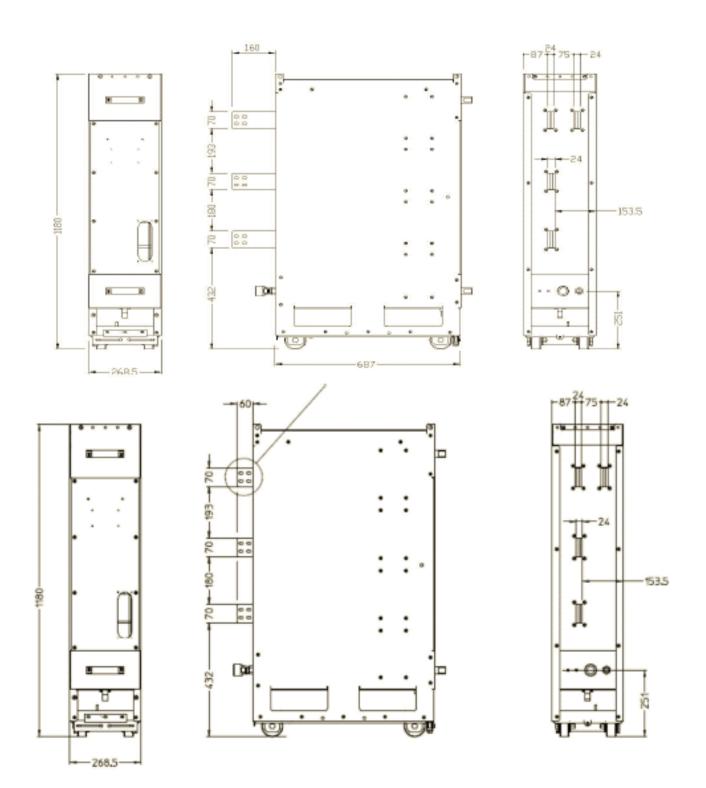


#### DEEP PURPLE OVERVIEW

SECOM introduced in 2013 a new series of frequency converters designed to supply power to equipment that incorporates technology currently used in induction heating, hardening, smelting and/or other applications where a resonant circuit is required.

The **"Deep Purple"** is an IGBT power electronic inverter developed for a highfrequency induction heating application. The load current and the output frequency of the application define the rated power of the inverter. The power module is water-cooled.

Strenght point of this solution are:
IGBT High Frequency technology
A drastically gas and smoke emission reduction typical of the old heating process


A reduced energy consumption
 Immediate availability of the heating -> no need long start or stop sequences, as with traditional reheating furnaces.

H bridge configuration is used in SECOM induction heating converters.





#### DEEP PURPLE DIMENSIONAL DRAWINGS



### DEEP PURPLE COOLING SYSTEM

The power modules are equipped with a cooling system circuit to refresh and cool down the main power devices such as IGBT and input thyristors.

The inlet and outlet of the cooling system are located on the bottom rear side of the module. A system of quick connect couplings guarantee a faster operation maintenance.

The main cooling data have described in tables below.

It is mandatory to respect the water flow value described.

| Data                            | Value  |
|---------------------------------|--------|
| Internal pipes water Volume (I) | 4      |
| Water Flow (I/min) min-max      | 35-40  |
| Rated Pressure drop (bar)       | 3      |
| Water Temperature (°C)          | 10-40* |
| Max Water Temperature (°C)      | 40*    |
| Semiconductor losses (kW)       | 15     |
| Busbar and internal losses (kW) | 1,2    |

\* For higher temperature is necessary to consider a derating of the power system

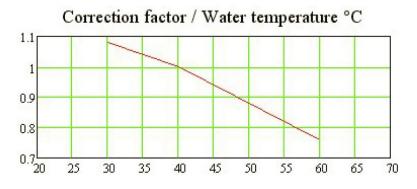



Fig. - Output current vs. water temperature

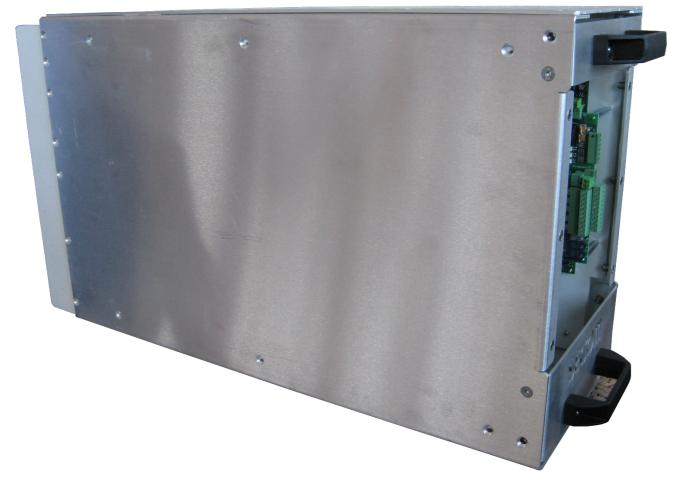
The power module is equipped with fans to ensure the cooling of the internal parts not watercooled. The cooling fans have to be supplied by an external power supply 230Vac 50Hz.



### DEEP PURPLE TECHNICAL DATA

| Ambient conditions  |                |  |
|---------------------|----------------|--|
| Altitude            | 1000 m. a.s.l. |  |
| Air temperature     | 0 ÷ 40°C       |  |
| Storage temperature | 0 ÷ 50°C       |  |
| Relative humidity   | 10 ÷ 90 %      |  |

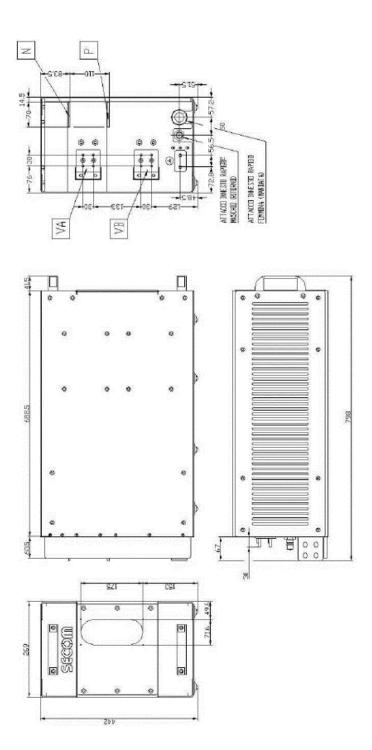
| Dimensions and weight       |          |  |
|-----------------------------|----------|--|
| Height                      | 1100 mm. |  |
| Width                       | 270 mm.  |  |
| Depth with short connection | 798 mm.  |  |
| Depth with long connection  | 898 mm   |  |
| Weight                      | 140 kg.  |  |


| Electrical data                          |               |  |  |  |
|------------------------------------------|---------------|--|--|--|
| Inverter type IGBT single phase inverter |               |  |  |  |
| Cooling system                           | Air / water   |  |  |  |
| Rated current                            | 1700 A        |  |  |  |
| Supply voltage                           | 600 ÷ 930Vdc  |  |  |  |
| Output voltage (square waveform)         | up to +VDCBUS |  |  |  |
| Output frequency                         | 200 ÷ 1000 Hz |  |  |  |



### VIOLA OVERVIEW

SECOM introduced in 2013 a new series of frequency converters designed to supply power to equipment that incorporates technology currently used in induction heating, hardening, smelting and/or other applications where a resonant circuit is required.


The **"Viola"** is a high-frequency converter that requires an Induction Heating. The output power is determined by the maximum output current and frequency required in the application itself.





### VIOLA DIMENSIONAL DRAWINGS

The SD\_HF is composed of a removable module as shown in the figure below.



### VIOLA COOLING SYSTEM

The modules are provided with water cooling circuits that guarantees the cooling of the main components (IGBTs and DC-link capacitors)

Water inlet and and outlet valves are placed in the rear side of the module.

The cooling system characteristics are indicated in the table below.

| Characteristic         | Value |
|------------------------|-------|
| Volume (I)             | 3     |
| Water Flow (I/min)     | 30    |
| Pressure (bar)         | 1-3   |
| Temperature range (°C) | 10-43 |
| Max Temperature (°C)   | 43    |

The module is provided by air intake on top and bottom side of the module to guarantee the appropriate ventilation of the internal parts not water cooled.

Warning! Keep clean the air intake, the grill obstructed could cause damage to the equipment. It is possible to use eventual cubicle ventilation to guarantee the correct air cooling of the module.

Inside the module two fans cool down the backup power supply that use the DC bus voltage to supply the electronic cards of the module in case of malfunctions of the main  $24V_{\rm DC}$  supply.



### VIOLA TECHNICAL DATA

| Ambient conditions  |                |  |
|---------------------|----------------|--|
| Altitude            | 1000 m. a.s.l. |  |
| Air temperature     | 0 ÷ 40°C       |  |
| Storage temperature | 0 ÷ 50°C       |  |
| Relative humidity   | 10 ÷ 90 %      |  |

| Dimensions and weight   |         |  |  |
|-------------------------|---------|--|--|
| Height 442 mm.          |         |  |  |
| Width                   | 269 mm. |  |  |
| Depth (handle and bars) | 798 mm. |  |  |
| Weight                  | 45 kg.  |  |  |

| Electrical data        |                            |  |
|------------------------|----------------------------|--|
| Converter type         | IGBT single phase inverter |  |
| Cooling system         | Water                      |  |
| Output frequency range | 0 - 10 kHz*                |  |

\*: 15/I min each IGBTs heatsink, 8I/min for the capacitor heatsink.

| DC/AC Inverte | r 500V - 690V | Sn [KVA] | In [A] | Pn [kW] | Vin [Vdc] | Vout<br>[Vac] | Fsw [kHz] |
|---------------|---------------|----------|--------|---------|-----------|---------------|-----------|
| 110650R1001   | SD280V06.HF   | 280      | 400    | 238     | 930       | 690           | 6         |
| 110650R1041   | SD310V06.HF   | 310      | 450    | 264     | 930       | 690           | 6         |
| 110650R1042   | SD340V06.HF   | 340      | 490    | 289     | 930       | 690           | 6         |
| 110650R1043   | SD440V06.HF   | 440      | 630    | 374     | 930       | 690           | 3         |



#### SPARTAN OVERVIEW

SECOM introduced in 2013 a new series of frequency converters designed to supply power to equipment that incorporates technology currently used in induction heating, hardening, smelting and/or other applications where a resonant circuit is required. H bridge configuration is used in SECOM induction heating converters.

The "**Spartan**" is an IGBT power electronic converter developed for high frequency Induction Heating application. The load current and the output frequency of the application define the rated power of the Inverter. The power module is water-cooled.

Strenght point of this solution are:

- IGBT High Frequency technology

- A drastically gas and smoke emission reduction typical of the old heating process

- A reduced energy consumption

- Immediate availability of the heating -> no need long start or stop sequences, as with traditional reheating furnaces.





#### SPARTAN DIMENSIONAL DRAWINGS

The power converter of the series SD\_LF is costituited by a removable module as shown in the figures below.

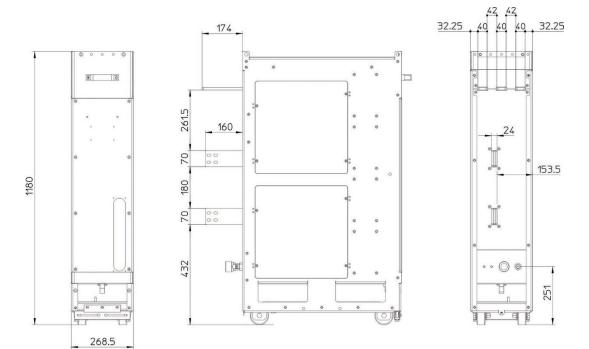



Fig. - Dimensions

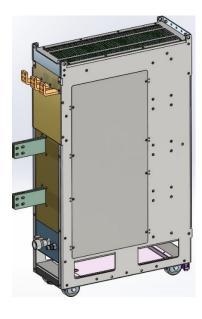



Fig. - Power connection

### SPARTAN COOLING SYSTEM

The power modules are equipped with a cooling system circuit to refresh and cool down the main power devices such as IGBT and input thyristors.

The inlet and outlet of the cooling system are located on the bottom rear side of the module. A system of quick connect couplings guarantee a faster operation maintenance.

The main cooling data have described in tables below.

| Data                            | Value  |
|---------------------------------|--------|
| Internal pipes water Volume (I) | 4      |
| Water Flow (I/min) min-max      | 50-80  |
| Rated Pressure (bar)            | 2-4    |
| Water Temperature (°C)          | 10-40* |
| Max Water Temperature (°C)      | 40*    |
| Semiconductor losses (kW)       | 15     |
| Busbar and internal losses (kW) | 1,2    |

\* For higher temperature is necessary to consider a derating of the power system

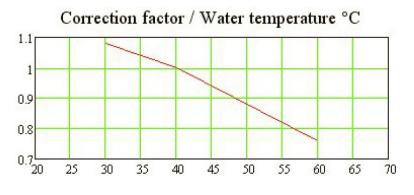



Fig. - Output current vs. water temperature

The power module is equipped with fans to ensure the cooling of the internal parts not water-cooled. The cooling fans have to be supplied by an external power supply  $230V_{AC}$  50Hz.



#### SPARTAN COOLING SYSTEM

In the figure below, output current capability as frequency function has been described. Two limits has to be respected: capacitor limit do to input capacitor ripple and thermal limit. For higher current capability at lower output frequency is necessary a larger capacitor banks.

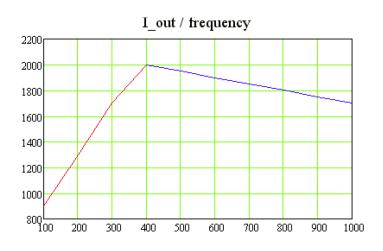
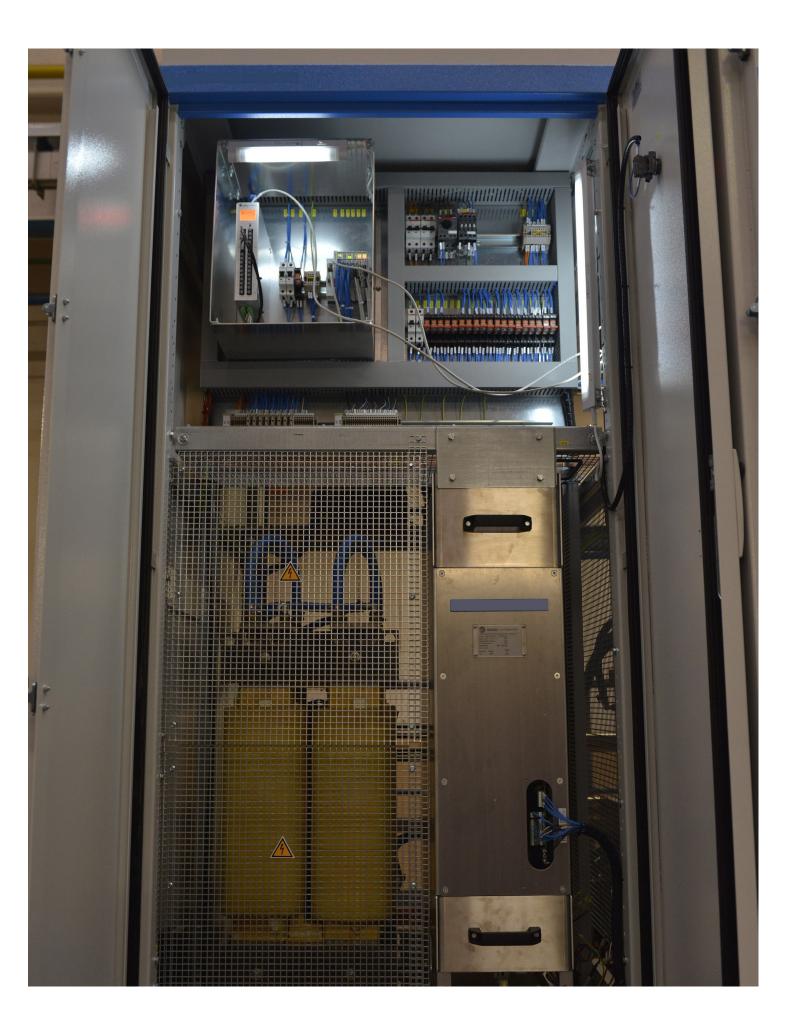



Fig. - Output current vs. output frequency



#### SPARTAN TECHNICAL DATA


| Ambient conditions  |                |  |  |
|---------------------|----------------|--|--|
| Altitude            | 1000 m. a.s.l. |  |  |
| Air temperature     | 0 ÷ 40°C       |  |  |
| Storage temperature | 0 ÷ 50°C       |  |  |
| Relative humidity   | 10 ÷ 90 %      |  |  |

| Dimensions and weight      |                   |  |  |
|----------------------------|-------------------|--|--|
| Height 1180 mm.            |                   |  |  |
| Width                      | 270 mm.           |  |  |
| Depth with long connection | 898 (690+208) mm. |  |  |
| Weight                     | 160 kg.           |  |  |

| Electrical data                  |                                                                                        |  |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Inverter rectifier type          | Three-phase thyristor bridge<br>I <sub>N</sub> = 1250Adc<br>I <sub>MAX</sub> = 1500Adc |  |  |  |  |
| Fuses (external)                 | (1250 A aR type suggested                                                              |  |  |  |  |
| Output Inverter type             | H bridge IGBT inverter                                                                 |  |  |  |  |
| Cooling system                   | Air/water                                                                              |  |  |  |  |
| Rated current                    | 1700 A                                                                                 |  |  |  |  |
| Commutated current               | 1700 A                                                                                 |  |  |  |  |
| Supply voltage                   | 400 ÷ 720Vac                                                                           |  |  |  |  |
| Output voltage (square waveform) | up to +VDCBUS                                                                          |  |  |  |  |
| Output frequency                 | 200 ÷ 1000 Hz                                                                          |  |  |  |  |

The main technical data of the power converter (type LF\_H) are given below:

| Description                    | N. Module | AN<br>kVA | I <sub>cont. max</sub><br>A | P <sub>cont.max</sub><br>kW | Dimensions (W*D*H)<br>mm |  |  |
|--------------------------------|-----------|-----------|-----------------------------|-----------------------------|--------------------------|--|--|
| AC/AC Inverter 380-415 @ 1 kHZ |           |           |                             |                             |                          |  |  |
| SD220V04.LF                    | 1         | 220       | 540                         | 204                         | 898*270*1180 mm.         |  |  |
| SD280V04.LF                    | 1         | 280       | 670                         | 255                         | 898*270*1180 mm.         |  |  |
| SD560V04.LF                    | 1         | 560       | 1340                        | 510                         | 898*270*1180 mm.         |  |  |
| AC/AC Inverter 440-480         | @ 1 kHZ   |           |                             |                             |                          |  |  |
| SD310V05.LF                    | 1         | 310       | 640                         | 280                         | 898*270*1180 mm.         |  |  |
| SD340V05.LF                    | 1         | 340       | 700                         | 306                         | 898*270*1180 mm.         |  |  |
| SD650V05.LF                    | 1         | 650       | 1350                        | 595                         | 898*270*1180 mm.         |  |  |
| AC/AC Inverter 500-690         | @ 1 kHZ   |           |                             |                             |                          |  |  |
| SD450V06.LF                    | 1         | 530       | 770                         | 383                         | 898*270*1180 mm.         |  |  |
| SD600V06.LF                    | 1         | 600       | 870                         | 434                         | 898*270*1180 mm.         |  |  |
| SD1170V06.LF                   | 1         | 1170      | 1700                        | 850                         | 898*270*1180 mm.         |  |  |



### TESEO OVERVIEW

SECOM introduced in 2013 a new series of frequency converters designed to supply power to equipment that incorporates technology currently used in induction heating, hardening, smelting and/or other applications where a resonant circuit is required. H bridge configuration is used in SECOM induction heating converters.

The "**Teseo**" is an IGBT power electronic for induction heating applications. The electrical power flowing throung the "H-Bridge" inverter is converter in thermal power by mean of an inductor (outside the power module).

The output frequency is defined by the working point of the application. The control unit is outside the inverter and commands the IGBT and reads the current and other feedbacks in order to control the injected power in the inductor.

Strenght point of this solution are:

- IGBT High Frequency technology

- A drastically gas and smoke emission reduction typical of the old heating process

- A reduced energy consumption

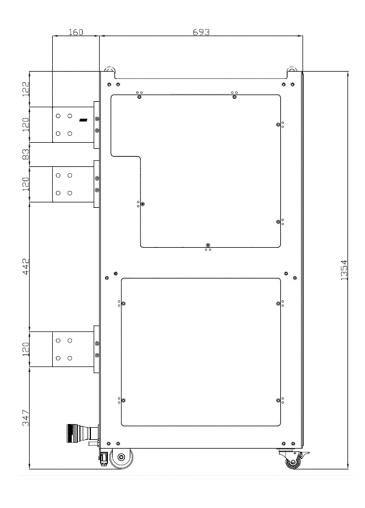
- Immediate availability of the heating -> no need long start or stop sequences, as with traditional reheating furnaces.



The **TESEO** is an DC/AC converter with H-Bridge topology. The short description of the machine is descripted below:

The SDXXXXV06.LFT, where the XXXX is the active power (kW) calculated at 50 z output current.

There are 4 inverter sizes, are in the table below:


| Model name    | Nominal<br>current<br>@ 50 Hz<br>[Arms] | Ac voltage<br>input<br>[Vrms] | Capacitor<br>value [µF] | Overcurrent<br>value [Apk] | Overvoltage value [Vpk] |
|---------------|-----------------------------------------|-------------------------------|-------------------------|----------------------------|-------------------------|
| SD600KV06.LFT | 750                                     | 690+5%-10%                    | 16800                   | Nd                         | 1050                    |
| SD840KV06.LFT | 1050                                    | 690+5%-10%                    | 23800                   | 4400                       | 1050                    |
| SD1M20V06.LFT | 1500                                    | 690+5%-10%                    | 33200                   | 4400                       | 1050                    |
| SD1M52V06.LFT | 1900                                    | 690+5%-10%                    | 47600                   | 4400                       | 1050                    |

The control system is interfaced with the power module through the fiber optic and connectors located in the interface board (INTER\_TES).



The machine has three different size, listed in the table below (without bars):

| Model name     | W (mm) | D (mm) | H (mm) |
|----------------|--------|--------|--------|
| SD0600KV06.LFT | 350    | 690    | 1354   |
| SD0840KV06.LFT | 350    | 690    | 1354   |
| SD1200KV06.LFT | 390    | 690    | 1354   |
| SD1540KV06.LFT | 470    | 690    | 1354   |



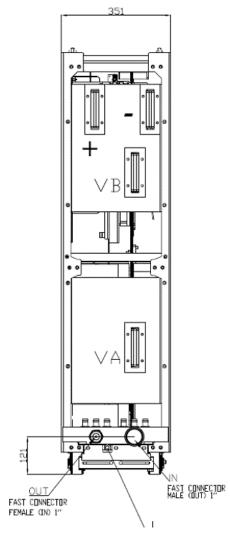



Fig. - SD600V06.LFT and SD840V06.LFT left side view

Fig. - SD600V06.LFT and SD840V06.LFT rear side view

### TESEO MECHANICAL DATA

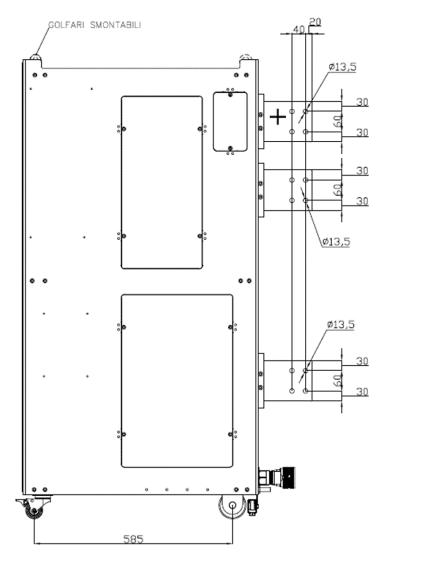
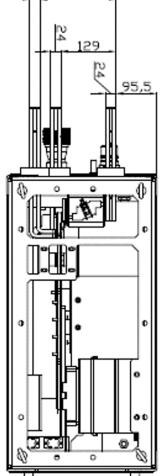




Fig. - SD600V06.LFT and SD840V06.LFT right side view



24

177,8

Fig. - SD600V06.LFT and SD840V06.LFT top side view

### TESEO COOLING SYSTEM

The power modules are equipped with a cooling system circuit to refresh and cool down the IGBT. The inlet and outlet of the cooling system are located on the bottom rear side of the module. A system with quick connector guaranteeS a fast operating maintenance.

It is mandatory to respect the water flow value described.

| Data                                 | Value     |  |  |
|--------------------------------------|-----------|--|--|
| Internal pipes water volume [L]      | 4         |  |  |
| Water flow [L/min]                   | > 40      |  |  |
| Rated pressure drop [bar] @ 40 L/min | 1.7       |  |  |
| Operating temperature range [°C]     | 10÷40     |  |  |
| Maximum absolute pressure [bar]      | 3         |  |  |
| Semiconductor losses [kW]            | 18        |  |  |
| Heatsink material                    | Aluminium |  |  |
| Water type                           | Distilled |  |  |
| Water maximum conductivity [µS/cm]   | < 50      |  |  |
| Water pH                             | 7÷8       |  |  |
| Water hardness                       | 3÷10 °dH  |  |  |
| Undissolved particles                | < 5 mg/l  |  |  |
| Quick connection type                | 76KB (1") |  |  |

It is mandatory to use only stainless steel or aluminum in the entire hydraulic circuit connected to power module.

The water flow/pressure drop characteristic is showed in the table below.

| Water flow [l/min] | ΔP [Bar] |
|--------------------|----------|
| 20                 | 0.7      |
| 30                 | 1.15     |
| 40                 | 1.7      |
| 50                 | 2.8      |



### TESEO TECHNICAL DATA

| Ambient conditions       |                |  |  |  |  |
|--------------------------|----------------|--|--|--|--|
| Altitude                 | 1000 m. a.s.l. |  |  |  |  |
| Air temperature          | 0 ÷ 40°C       |  |  |  |  |
| Storage temperature      | 0 ÷ 50°C       |  |  |  |  |
| Relative humidity        | 10 ÷ 90 %      |  |  |  |  |
| Maximum pollution degree | 2              |  |  |  |  |

| Dimensions and weight       |           |  |  |  |
|-----------------------------|-----------|--|--|--|
| Height                      | 1500 mm.  |  |  |  |
| Width                       | 350 ÷ 540 |  |  |  |
| Depth with short connection | 690 mm    |  |  |  |
| Depth with long connection  | 820 mm    |  |  |  |

| Electrical data  |                           |  |  |  |
|------------------|---------------------------|--|--|--|
| Converter type   |                           |  |  |  |
| Cooling system   | Water                     |  |  |  |
| Supply voltage   | 530 ÷ 930 V <sub>DC</sub> |  |  |  |
| Output frequency | 50 ÷ 1000 Hz              |  |  |  |

| Freq. Out [Hz] | Irms [A] | lcMax [Apeak] | Vdc max[V] | Power out [kW] | Vac in [V] | Vdc range [V] |
|----------------|----------|---------------|------------|----------------|------------|---------------|
| 50             | 750      | 958           | 1000       | 608            | 380÷690    | 530÷1000      |
| 100            | 1250     | 1133          | 1000       | 1013           | 380÷690    | 530÷1000      |
| 200            | 1850     | 2466          | 1000       | 1499           | 380÷690    | 530÷1000      |
| 300            | 2350     | 3133          | 1000       | 1904           | 380÷690    | 530÷1000      |
| 400            | 2650     | 3533          | 1000       | 2147           | 380÷690    | 530÷1000      |
| 500            | 2850     | 3800          | 1000       | 2309           | 380÷690    | 530÷1000      |
| 1000           | 2800     | 3733          | 1000       | 2269           | 380÷690    | 530÷1000      |
| 1500           | 2500     | 1850          | 1000       | 2026           | 380÷690    | 530÷1000      |
| 2000           | 2300     | 1600          | 1000       | 1864           | 380÷690    | 530÷1000      |
| 2500           | 2150     | 1300          | 1000       | 1742           | 380÷690    | 530÷1000      |
| 3000           | 1900     | 1000          | 1000       | 1540           | 380÷690    | 530÷1000      |

Fig. – Derating table for SD0600KV06.LFT

### TESEO TECHNICAL DATA

| Freq. Out [Hz] | lrms [A] | lcMax [Apeak] | Vdc max[V] | Power out [kW] | Vac in [V] | Vdc range [V] |
|----------------|----------|---------------|------------|----------------|------------|---------------|
| 50             | 750      | 958           | 1000       | 608            | 380÷690    | 530÷1000      |
| 100            | 1250     | 1133          | 1000       | 1013           | 380÷690    | 530÷1000      |
| 200            | 1850     | 2466          | 1000       | 1499           | 380÷690    | 530÷1000      |
| 300            | 2350     | 3133          | 1000       | 1904           | 380÷690    | 530÷1000      |
| 400            | 2650     | 3533          | 1000       | 2147           | 380÷690    | 530÷1000      |
| 500            | 2850     | 3800          | 1000       | 2309           | 380÷690    | 530÷1000      |
| 1000           | 2800     | 3733          | 1000       | 2269           | 380÷690    | 530÷1000      |
| 1500           | 2500     | 1850          | 1000       | 2026           | 380÷690    | 530÷1000      |
| 2000           | 2300     | 1600          | 1000       | 1864           | 380÷690    | 530÷1000      |
| 2500           | 2150     | 1300          | 1000       | 1742           | 380÷690    | 530÷1000      |
| 3000           | 1900     | 1000          | 1000       | 1540           | 380÷690    | 530÷1000      |

Fig. – Derating table for SD0600KV06.LFT

| Freq. Out [Hz] | Irms [A] | lcMax [Apeak] | Vdc max[V] | Power out [kW] | Vac in [V] | Vdc range [V] |
|----------------|----------|---------------|------------|----------------|------------|---------------|
| 50             | 1050     | 1134          | 1000       | 851            | 380÷690    | 530÷1000      |
| 100            | 1700     | 2252          | 1000       | 1377           | 380÷690    | 530÷1000      |
| 200            | 2350     | 2538          | 1000       | 1904           | 380÷690    | 530÷1000      |
| 300            | 2650     | 2862          | 1000       | 2147           | 380÷690    | 530÷1000      |
| 400            | 3000     | 3240          | 1000       | 2431           | 380÷690    | 530÷1000      |
| 500            | 2900     | 3866          | 1000       | 2350           | 380÷690    | 530÷1000      |
| 1000           | 2800     | 2792          | 1000       | 2269           | 380÷690    | 530÷1000      |
| 1500           | 2500     | 1816          | 1000       | 2026           | 380÷690    | 530÷1000      |
| 2000           | 2300     | 1572          | 1000       | 1864           | 380÷690    | 530÷1000      |
| 2500           | 2150     | 1281          | 1000       | 1742           | 380÷690    | 530÷1000      |
| 3000           | 1900     | 960           | 1000       | 1540           | 380÷690    | 530÷1000      |

Fig. - Derating table for SD0840KV06.LFT



### TESEO TECHNICAL DATA

| Freq. Out [Hz] | lrms [A] | lcMax [Apeak] | Vdc max[V] | Power out [kW] | Vac in [V] | Vdc range [V] |
|----------------|----------|---------------|------------|----------------|------------|---------------|
| 50             | 1500     | 1620          | 1000       | 1215           | 380÷690    | 530÷1000      |
| 100            | 2200     | 2376          | 1000       | 1783           | 380÷690    | 530÷1000      |
| 200            | 2900     | 3132          | 1000       | 2350           | 380÷690    | 530÷1000      |
| 300            | 3000     | 4000          | 1000       | 2431           | 380÷690    | 530÷1000      |
| 400            | 3000     | 3240          | 1000       | 2431           | 380÷690    | 530÷1000      |
| 500            | 2900     | 3866          | 1000       | 2350           | 380÷690    | 530÷1000      |
| 1000           | 2800     | 2792          | 1000       | 2269           | 380÷690    | 530÷1000      |
| 1500           | 2500     | 1816          | 1000       | 2026           | 380÷690    | 530÷1000      |
| 2000           | 2300     | 1572          | 1000       | 1864           | 380÷690    | 530÷1000      |
| 2500           | 2150     | 1281          | 1000       | 1742           | 380÷690    | 530÷1000      |
| 3000           | 1900     | 960           | 1000       | 1540           | 380÷690    | 530÷1000      |

Fig. – Derating table for SD1200KV06.LFT

| Freq. Out [Hz] | Irms [A] | lcMax [Apeak] | Vdc max[V] | Power out [kW] | Vac in [V] | Vdc range [V] |
|----------------|----------|---------------|------------|----------------|------------|---------------|
| 50             | 1900     | 2052          | 1000       | 1540           | 380÷690    | 530÷1000      |
| 100            | 2400     | 2592          | 1000       | 1945           | 380÷690    | 530÷1000      |
| 200            | 3000     | 3240          | 1000       | 2431           | 380÷690    | 530÷1000      |
| 300            | 3100     | 3348          | 1000       | 2512           | 380÷690    | 530÷1000      |
| 400            | 3100     | 3348          | 1000       | 2512           | 380÷690    | 530÷1000      |
| 500            | 2900     | 3132          | 1000       | 2350           | 380÷690    | 530÷1000      |
| 1000           | 2800     | 2792          | 1000       | 2269           | 380÷690    | 530÷1000      |
| 1500           | 2500     | 1850          | 1000       | 2026           | 380÷690    | 530÷1000      |
| 2000           | 2300     | 1600          | 1000       | 1864           | 380÷690    | 530÷1000      |
| 2500           | 2150     | 1300          | 1000       | 1742           | 380÷690    | 530÷1000      |
| 3000           | 1900     | 1000          | 1000       | 1540           | 380÷690    | 530÷1000      |

Fig. - Derating table for SD1540KV06.LFT



Via Archimede 18 Sesto San Giovanni (MI), 20099 CONTACT INFO

T: +39 02.26.22.40.54 Fx: +39 02.24.06.945 info@secompower.com commerciale@secompower.com www.secompower.it